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HERMANN EMIL FISCHER (1852-1919) was considered
by his father as too stupid to be a businessman and
better suited to being a student, but he became the
greatest chemist of his age. In addition to his lock-and-key
model of enzyme specificity, he made major contributions
to organic chemistry, including work on carbohydrates
(especially their stereochemistry), purines, amino acids (he
was the discoverer of valine and proline), proteins and
triacylglycerols. In 1902 he became the second winner
of the Nobel Prize for Chemistry, “in recognition of his
synthetic work in the sugar and purine groups”. He was in
poor health at the end of his life, caused in part by toxic
effects of the heavy use of phenylhydrazine in his synthetic
work, and after losing two of his sons in the First World
War he committed suicidein 1919.
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Figure 12.30. Conformational change of hexokinase D induced
by binding of glucose. In the absence of glucose the two

domains represented by the two degrees of shading are wide
open, closing completely when glucose binds at a site behind
the white circle.

12.4.2 Induced fit today

Now that the three-dimensional structures of many enzymes
are known, not only in crystals but in solution in different
states of the catalytic process, it has become clear that
conformational changes induced by substrate binding are as
general a phenomenon as Koshland envisaged. In enzyme
mechanisms they range from changes so slight that they are
barely observable to changes as large that induced by binding
of glucose to hexokinase D, an enzyme discussed at the end of
this chapter (Section 12.9) in the context of cooperativity in

monomeric enzymes. This is illustrated in Figure 12.30.

Even larger changes in conformation are found in intrinsically
unstructured proteins. These are not enzymes, but are small
proteins that only acquire a definite three-dimensional
structure when bound to other proteins; otherwise they
random coils. For example, CP12 is a 9 kDa protein that

modulates the activity of the Calvin cycle in photosynthetic
organisms by acting as a scaffold element in the formation
of a supramolecular complex with glyceraldehyde-3-
phosphate dehydrogenase and phosphoribulokinase. As Erales
and coworkers have shown, it is “chaperone-like”, which
means that when bound to glyceraldehyde 3-phosphate
dehydrogenase it protects the enzyme from aggregation and

loss of activity.

12.5 The symmetry model of Monod,
Wyman and Changeux

12.5.1 Basic postulates of the symmetry model

Cooperative interactions in hemoglobin are not unique in
requiring interactions between sites that are widely separated
in space; the same is true of other cooperative proteins, and
of allosteric effects in many enzymes. A striking example
is provided by the allosteric inhibition of phosphoribosyl-
ATP pyrophosphorylase by histidine: Martin found that mild
treatment of this enzyme by Hg?* ions destroyed the
sensitivity of the catalytic activity to histidine, but affected
neither the uninhibited activity nor the binding of histidine. In
other words, the metal ion interfered with neither the catalytic
site nor the allosteric site, but with the connection between
them. Monod, Changeux and Jacob studied many examples
of cooperative and allosteric phenomena, and concluded that
they were closely related and that conformational flexibility
probably accounted for both. Subsequently, Monod and co-
workers proposed a general model to explain both phenomena
within a simple set of postulates. It has sometimes been called
the allosteric model, but the term symmetry model emphasizes
the principal difference between it and alternative models,
and avoids the contentious association between allosteric and
cooperative effects.

§12.9, pages 320-323

The symmetry model starts from the observation that each
molecule of a typical cooperative protein contains several
subunits. Indeed, this must be so for binding cooperativity at
equilibrium, though it is not required in kinetic cooperativity
(Section 12.9). The symmetry model for four subunits is

shown in Figure 12.31, but for simplicity I shall analyze the
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symmetry model in terms of a protein with two subunits
(n = 2), mentioning results for an unspecified number of
subunits wherever those for n = 2 fail to express the general
case adequately. Any number of subunits greater than one is
possible, and any other kind of ligand (inhibitor or activator)
can be considered instead of a substrate.

The symmetry model is based on the following postulates:

1. Each subunit can exist in two different conformations, R
and T. These designations, nowadays regarded just as labels,
originally stood for relaxed and tense, because the protein
needs to relax to bind substrate, breaking some of the
interactions that maintain its native structure in order to
make new ones with the substrate.

2. All subunits of a molecule must be in the same
conformation at any time; hence, for a dimeric protein,
the conformational states Ry, and T, are the only ones
permitted, the mixed conformation RT being forbidden.
This condition is much more restrictive for more than two
subunits. For example, for n = 4 the allowed states are R, and
T4,and R3T, Ry, T, and RT3 are all forbidden.

3. The two states of the protein are in equilibrium, with an
equilibrium constant L = [T5]/[R,].

4. A ligand can bind to a subunit in either conformation, but
the intrinsic dissociation constants16 are different: K
=[R][A]/[RA] for each R subunit, K = [T][A]/[TA] for each T
subunit. The ratio Kz/KT is sometimes written as ¢, but here
we shall use the more explicit form.
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Figure 12.31. The symmetry model of Monod, Wyman and

Changeux, illustrated here for a protein with four binding

sites. For analyzing the algebra in the text the simpler two-site
model shown in Figure 12.32 will be used.

Figure 12.32. The symmetry model of Monod, Wyman and

Changeux, illustrated here for a protein with two binding sites.

JEFFRIES WYMAN (1901-1995) was the third of the same
name: his grandfather was a distinguished anatomist,
and his father was an officer in the Bell Telephone
Company. During his long career he made many
contributions to protein chemistry, especially in relation
to thermodynamics, and is particularly associated with
the idea of linkage between different ligands that bind
to the same protein—specifically to hemoglobin. He had
met Jacques Monod while working in Paris between 1952
and 1955, and his famous paper with him and Changeux
grew out of ideas that he had had much earlier. He spent
much of his working life in Europe, in Cambridge, Paris,
and especially Rome, where he remained for 25 years as a
“temporary” guest scientist. He was active in a number of
administrative roles, most particularly the establishment
of the European Molecular Biology Organization (EMBO).

JEAN-PIERRE CHANGEUX (1936-) pursued his doctoral
studies at the Pasteur Institute in Paris, under the direction
of Jacques Monod and Francois Jacob, and during this time
he worked on the theory of cooperativity. Subsequently
he became one of the leaders in a different field, that
of neurochemistry, and in that context he was the
first to isolate a membrane pharmacological receptor, the
nicotinic acetylcholine receptor of the eel electric organ.

12.5.2 Algebraic analysis

These postulates imply the set of equilibria between the
various states shown in Figure 12.32, and the concentrations

of the six forms of the protein are related by the following
expressions:
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[R2A]| = 2[R;][A] /KR (12.11)

[RyAz] = Z[RA][A] /KR = [Ro][A]*/ KR (12.12)
[T2] = L[R;] (12.13)

[T2A] = 2[T,][A]/ Ky = 2L[R;][A]/Ky (12.14)
[T2A2] = 3[T2A][A]/Ky = L[Ry][A]/KF (12.15)

In each equation, the “statistical” factor 2,‘1_-r or 1 results from
the definition of the intrinsic dissociation constants Kz and
Kt in terms of individual sites although the expressions are
written for complete molecules (compare Section 12.2.5). For
example, Ky = [R][A]/[RA] = 2[R,][A]/[R,A], because there are
two vacant sites in each R, molecule and one occupied site
in each RyA molecule. The fractional saturation y is defined
as before (Section 12.2.5) as the fraction of sites occupied by
ligand, and takes the following form:

:R:A] + Z[RQA_':: - [TgAE + 2:T3A::
2([Ry] + [RA] + [RoAp] + [To] + [ToA] + [T2Az))

y:

In the numerator the concentration of each molecule is
counted according to the number of occupied sites it contains
(and so empty molecules are not counted at all), but in
the denominator each molecule is counted according to how
many sites it contains, whether occupied or not, and so each
concentration is multiplied by the same factor 2. Substituting
the concentrations from equations 12.11-12.15, this becomes

§12.2.5, pages 291-295
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Generalizing this for more than two subunits, the

corresponding equation for n unspecified is as follows:
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Monod, Wyman and Changeux wrote this equation in a

superficially simpler form by replacing [A]/Kg by a and [A]/Kt
by ca:

- (1+a)" a4 L(14ca)* ea

(1+a)"+L(1+ca)"

However, this just conceals the structure of the equation
without changing anything fundamental.

12.5.3 Properties implied by the binding equation

The shape of the saturation curve defined by equation 12.17

depends on the values of n, L and Ky/Kr, as may be illustrated
by assigning some extreme values to these constants.

Special case 1. If n = 1, with only one binding site per molecule,
the equation simplifies to
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This is much less complicated than it looks, because it can be

y-_—

written just as

Al , with Kgr = %

— 4 —
Kr Ky

g = Kgrr + A]

Despite the complicated expression for this dissociation
constant, however, it is still a constant, and so the equation just
defines a noncooperative binding function. In other words no
cooperativity is possibleifn = 1.

Special case 2. If L = 0, the T form of the protein does not exist
under any conditions, and the factor (1 + [A]/Kg)*1 cancels
between the numerator and denominator, leaving
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V= —[)\.L__
- KR+ l:\_

This again predicts hyperbolic (noncooperative) binding.

Special case 3. A similar simplification occurs if L approaches
infinity, and then the R form does not exist: in this case,

A
- K]' R [1\]

Special case 4. It follows from the first three examples that
both R and T forms are needed if cooperativity is to be possible.
Moreover, the two forms must be functionally different from
one another, so that Ky = Kt. If Kg = K it is again possible to
cancel the common factor (1 + [A] /Kg)""1, leaving a hyperbolic
expression. This illustrates the reasonable expectation that if
the ligand binds equally well to the two states of the protein,
the relative proportions in which they exist are irrelevant to the
binding behavior.

General case. Apart from these special cases, equation 12.17

predicts positive cooperativity, as may be seen by multiplying
out the factors (1 + [A]l/Kg)*1 and (1 + [Al/Kp)"1, and
rearranging the result into the form of the Adair equation. For
n sites the result is complicated, but the case for the dimer is
adequately illustrative. Equation 12.16 becomes

('I/KR+I,/KT)[A.+ 1/Kj + L/K3 12 (12.18)
14L ' 1+L o
iy =
‘ 1/Kg + L/Ky ~ (1/Kg +L/K3 >
1+2(~ gy )W+( 17z ) A

Comparison of this with equation 12.5 shows the two Adair

constants to be as follows:

- 1+L o 1/Kg +L/Ky (12.19)
"~ 1/Kgr + L/Ky’

° 1/Ki+L/K}

Ky

and their ratio is

K  (1/Kg+L/Kg)2 K =~ KpKy = K2
Ky (+L)1/KR+L/K3) 1 L L L2

As the outer terms in the multiplied-out numerator and
denominator are the same, it is only necessary to examine the
middle terms, and as 2xy is less than x2 + y2 for any values of x
and y it follows that K; > K,, so the model predicts positive
cooperativity in terms of the Adair equation.l? Similar
relationships apply between all pairs of Adair constants in the
general case of unspecified n, and so the model predicts positive
cooperativity at all stages in the binding process.
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Figure 12.33. Explanation of equation 12.20. When [A] is small

the denominator of the fraction is dominated by L, and the line
remains close to the axis, but as [A] increases L gradually
becomes insignificant and the line approaches a rectangular
hyperbola.

Asthis conclusion is algebraic rather than intuitive, it is helpful
to examine one last special case, in which Ky is infinite and A
binds only to the R state. This is a natural application of the idea
of induced fit, though it is not an essential characteristic of the
symmetry model as proposed by Monod, Wyman and
Changeux. When K7 is infinite equation 12.16 simplifies to

14 [A] [A]
IA]\ 2

L—"— 1"" L J
( KR)

Without the constant L in the denominator this would be an

(12.20)

Y=

equation for hyperbolic binding, because the common factor (1
+ [A]/Kg) would cancel. When [A]is sufficiently large L becomes
negligible compared with the rest of the denominator, and
the curve approaches a hyperbola. But when [A] is small L
dominates the denominator and causes y to remain initially
very small as [A] increases from zero. In other words, as long as
L is significantly different from zero the curve of y against [A]
must be sigmoid.
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Figure 12.34. Binding curves for the symmetry model. The

curves are calculated from equation 12.18, with K;/Kg = 100

and the values of L indicated.

When Kp # Kg, the degree of cooperativity, and hence
the steepness of the curve, does not increase indefinitely
as L increases, but passes through a maximum when
L= =K:i/KR . When this relationship is obeyed the half-
saturation concentration (Kys in equation 12.1) takes the

simple form K, s = (KgKy)9->. However, as one may see from the
representative binding curves calculated from equation 12.16

shown in Figure 12.34, thisisin general an unreliable estimate;

the best one can say in general is that the half-saturation
concentration is between Ky and K. The figure was drawn
with a logarithmic concentration scale. If it is redrawn with a
linear scale (Figure 12.35) the differences between the different

L values are much less obvious.

In the corresponding Scatchard plots (Figure 12.36) the
extreme cases of L = O for the pure R state, as shown, and also
for the L = « for the pure T state (not shown), give straight
lines, and the intermediate values give curves with downward

curvature.
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Figure 12.35. Linear scale of concentration. Some of the

curves from Figure 12.34 are redrawn with a linear scale of

concentrations.
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Figure 12.36. Scatchard plots for the symmetry model. Some
of the curves from Figure 12.34 are redrawn as Scatchard plots.

12.5.4 Heterotropic effects

Monod and co-workers distinguished between homotropic
effects, or interactions between identical ligands, and
heterotropic effects, or interactions between different ligands,
such as a substrate and an allosteric effector. Although
the symmetry model requires homotropic effects to be
positively cooperative, it places no corresponding restriction
on heterotropic effects, and it can accommodate these with no
extra complications; this is, indeed, one of its most satisfying
features. If a second ligand B binds preferentially to the R state
of the protein, the state preferred by A, at a different site from
A (so that there is no competition between them), it facilitates
binding of A by increasing the availability of molecules in
the R state; it thus acts as a positive heterotropic effector, or
allosteric activator. On the other hand, a ligand C that binds
preferentially to the T state, which binds A weakly or not at
all, has the opposite effect: it hinders the binding of A by
decreasing the availability of molecules in the R state, and
will thus act as a negative heterotropic effector, or allosteric
inhibitor. If all binding is exclusive, which means that each
ligand binds either to the R state or to the T state, but not
to both, the resulting binding equation for A, as modified by
the presence of B and C, is particularly simple, as the allosteric
constant L can now be replaced by an apparent value L2PP
that increases with the inhibitor concentration and decreases
with the activator concentration, reflecting the capacity of
inhibitors to displace the equilibrium away from the state
that favors substrate binding, and of activators to displace it
towards the same state:

(12.21)
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When ligands do not bind exclusively to one or other state, the
behavior is naturally more complicated, but one can still get a
reasonable idea of the possibilities by examining Figure 12.34
in the light of equation 12.21.

High concentrations of allosteric effectors of either sort clearly
tend to decrease the cooperativity, as they make the protein
resemble either pure R or pure T, but there may be effects in
the opposite direction at low concentrations if the value of L
(the value of L3PP in the absence of effectors) is not optimal.
In Figure 12.34, for example, the steepest curve occurs with L

= 100, and that for L = 10 is less steep: any concentration of
activator tends to decrease L2PP, taking it further from LaPP =
100, and hence making it less cooperative.

However, adding an allosteric inhibitor initially increases the
cooperativity, to a maximum at L2&P = 100, but further
increases in inhibitor concentration tend to decrease it. If
the value of L were greater than 100 rather than less, it
would be the activator that would increase the cooperativity
at low concentrations, whereas the inhibitor would decrease
the cooperativity at all concentrations. These tendencies are
not entirely obvious from examination of the curves in Figure
12.34, because in the middle of the range the differences in
steepness are not immediately apparent to the eye. However,
one can get a correct impression of the directions in which the
steepness changes from the fact that the curves at the extremes
are noticeably less steep than the one in the middle.
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Figure 12.37. Comparison between the simplest forms of the
principal models of cooperativity.

A complication arises if we consider an ordinary
(nonallosteric) competitive inhibitor that binds to the R state
at exactly the same sites as the substrate A. This is considered
in Problem 12.5 at the end of this chapter. The binding
properties of phosphofructokinase from Escherichia coli were
thoroughly studied by Blangy and co-workers: over a wide
range of concentrations of ADP and phosphoenolpyruvate, an
allosteric activator and inhibitor respectively, the binding of
the substrate fructose 6-phosphate proved to agree well with
the predictions of the symmetry model. Nonetheless, it cannot
be regarded as a universal explanation of binding cooperativity,
because it cannot explain the negative cooperativity observed
for some enzymes, and some of its postulates are not altogether
convincing. The central assumption of conformational
symmetry is not readily explainable in structural terms, for
example, and for many enzymes it is necessary to postulate
the occurrence of a “perfect K system”, which means that the R
and T states of the enzyme have identical catalytic properties
despite having grossly different binding properties. These
and other questionable aspects of the symmetry model have

stimulated the search for alternatives.
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12.6 Comparison between the principal
models of cooperativity

The other major model of cooperativity is the sequential model
of Koshland and co-workers, which we shall consider formally
in the next section. First, however, it will be useful to pause
to compare it with the symmetry model just discussed. Both
assume that cooperativity arises from interactions between
subunits in an oligomeric protein, and thus neither can
explain how a monomeric protein might exhibit cooperativity
(Section 12.9), and both assume that the interactions result

from the possibility of each subunit to exist in more than
one conformation. However, the symmetry model treats the
different conformations as existing independently of ligand
binding, whereas the sequential model treats changes in
conformation as intimately linked to the binding of ligand.
Haber and Koshland showed how both models can be regarded
as special cases of a general model in which all possible
combinations of degree of conformational change and degree
of binding can exist. For a tetrameric protein with the four
subunits arranged as a square, therefore, one could suppose
that 25 different states could exist, as shown in Figure 12.37.
However, the symmetry model considers only the ten states

in the first and last columns, whereas the sequential model
considers only the states along the diagonal.

§12.9,pages 320-323

Strictly we should talk of the simplest symmetry and sequential
models,18 because the proponents of both models have at
times considered variants in which some of the postulates are
relaxed. However, even the simplest versions make predictions
that are often difficult to distinguish experimentally, and
very little is gained by making them more complicated than
necessary. Over the years since these models were proposed,
many authors have proposed general models of which they
are special cases. However, although this is obviously possible,
as Figure 12.37 shows, it is not obviously useful, except as a

purely qualitative exercise.

12.7 The sequential model of
Koshland, Nemethy and Filmer

12.7.1 Postulates

Although the symmetry model incorporates the idea of
purposive conformational flexibility, it departs from the theory
of induced fit in permitting ligands to bind to both R
and T conformations, albeit with different binding constants.
Koshland and co-workers showed that a more orthodox
application of induced fit, known as the sequential model, could
account for cooperativity equally well. Like Monod and co-
workers, they postulated the existence of two conformations,
which they termed the A and B conformations, corresponding
to the T and R conformations respectively.12 This inversion of
the order in which they are usually spoken has sometimes been
a source of confusion, and for that reason, and also to allow
continued use of A as a symbol for substrate, as elsewhere in
this book, the symbols T and R will be used here29. In contrast
with the symmetry model, Koshland and co-workers assumed
that the R conformation was induced by ligand binding,
so that substrate binds only to the R conformation, the R
conformation exists only with substrate bound to it, and the T
conformation exists only with substrate not bound to it.

Koshland and co-workers postulated that cooperativity arose
because the properties of each subunit were modified by the
conformational states of the neighboring subunits. The same
assumption is implicit in the symmetry model, but it is
emphasized in the sequential model, which is more concerned
with the details of interaction, and avoids the arbitrary
assumption that all subunits must exist simultaneously in the
same conformation. Hence conformational hybrids, such as TR
in a dimer, or T3R, TR, and TR3 in a tetramer, are not merely
allowed, but follow directly from the assumption of strict
induced fit.

Because the symmetry model was not concerned with the
details of subunit interactions, there was no need in Section
12.5 to consider the geometry of subunit association, the
quaternary structure of the protein. By contrast, the sequential
model does require consideration of geometry, for any protein
with more than two subunits, because different arrangements



FUNDAMENTALS OF ENZYME KINETICS

of subunits result in different binding equations. Here we

shall consider a dimer for simplicity (Figure 12.38), and the
geometry can then be ignored, but it cannot be ignored when
extending the treatment to trimers, tetramers and so on.

The emphasis on geometry and the need to treat each geometry
separately have given rise to the widespread but erroneous
idea that the sequential model is more general and complicated
than the symmetry model, but for any given geometry the two
models are about equally complicated and neither is a special
case of the other. As illustrated in Figure 12.37 above, they

can both can be generalized into the same general model, by
relaxing the symmetry requirement of the symmetry model
and the strict induced-fit requirement of the sequential model.

§12.5, pages 304-312
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Figure 12.38. Sequential model for a dimeric protein.

To see how a binding equation is built up in the sequential
model, consider the changes that occur when a molecule T,
binds one molecule of A to become RTA, as illustrated in detail
in Figure 12.39:

1. There is a statistical factor of 2, because there are two
equivalent ways of choosing one out of two subunits to
bind A. (The word “equivalent” is essential here, because
nonequivalent choices would lead to distinguishable
molecules that would have to be treated separately.)

2. The T:T interface is lost when we consider a T subunit in
isolation. We include no equilibrium constant for this, for
the reasons given in paragraph 5 below.

3. One subunit must undergo the conformational change
T - R, achange represented by the notional equilibrium
constant K; = [T]/[R] for an isolated subunit. In the simplest
version of the sequential model K, is tacitly assumed to be
large, so that the change occurs to a negligible extent if it is
not induced by ligand binding.

4. One molecule of A binds to a subunit in the R conformation,
represented by [A]/K, where K, is the intrinsic dissociation

constant [R][A]/[RA] for binding of A to an isolated subunit
in the R conformation.

5.In adimer there is one interface across which the two
subunits can interact. In the initial T, molecule these
are evidently two T subunits, so it is a T:T interface, but
in RTA it becomes a T:R interface, a change represented
by a notional equilibrium constant Kg. = [R:T]/[T:T].
Notice that this definition means that the stability is of
the T:R interface is defined in terms of a change from the
T:T interface as not as a absolute measure. That is why no
equilibrium constant was introduced in step 2 to represent
the loss of the T:T interface. In the original discussion by
Koshland and co-workers there was some confusion about
whether subunit interaction terms should be regarded as
absolute measures of interface stability (logically requiring
an additional constant Kt.t), or whether they should be
regarded as measures of the stability relative to a standard
state (the T:T interface). The latter interpretation is just
as rigorous, simpler to apply (because it leads to constants
that are inherently dimensionless, so there is no question of
ignoring dimensions), and leads to simpler equations with
fewer constants; it will be used here.
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Figure 12.39. Steps in conversion of T, to RTA. Descriptions

are expressed in the forward direction, but the equilibrium
constants are defined in the direction of dissociation.

12.7.2 Algebraic analysis

Putting all this together we may write down the following
expression for the concentration of RTA in terms of those of T
and A:
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Although using a dimer as an example allows the sequential
model to be explained with minimal complications, it leaves
one or two essential aspects of the model unexplained, so
we must pause briefly to consider what expression would
result from applying the same rules to the formation of a
molecule R,T»A, from a tetramer T,. We cannot now ignore
geometry, because there are at least three different possible
arrangements. Here we shall suppose that they interact as
if arranged at the corners of a square, and that of the two
different ways in which two ligand molecules can be bound to
such a molecule (Figure 12.40) we are dealing with the one in

which the two ligand molecules are on adjacent (rather than
diagonal) subunits. This gives a concentration of

£12.23)
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As there is now a new kind of interface between the two
adjacent subunits in the R conformation with ligand bound, we
need a new kind of subunit interaction constant, Kz.g which,
like K., is defined relative to the T:T interface, but otherwise
equation 12.23 is constructed in just the same way as equation
12.22, from the same components. A tetrahedral geometry, as
in Figure 12.41, requires a different analysis.

4|Ty)[A]PKg (KRR
KT K3

R 2(Ta[A]PKE
B

Figure 12.40. Square interaction. If the subunits interact as if

arranged in a square there are two different R,T,A, molecules
according to whether the occupied subunits are adjacent or
diagonal, which must be analyzed separately. Note that the
statistical factors are different in the two cases.
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Figure 12.41. Tetrahedral interaction. If the subunits interact
as if arranged in a tetrahedron there is just one kind of R, T, A,

molecule.

Returning now to the dimer, we can write down an expression
for the concentration of R,A, according to the same principles:

(12.24)

T, [APKR R

=
t

RoA;] = ~
A

Substituting equations 12.22 and 12.24 into the expression for

the fractional saturation, we have:

[AlKg.t . [A]’KRR (12.25)
y—_ [RTAI+2[RA)] _  KiKa KiK3
7 2[T2] + [RTA] + [ReA2]) - | 2[A]KRy A]KRR
KiKa K{K3

The sequential model is closely concerned with subunit
interactions, and the essential question that an equation such
as equation 12.25 answers is how binding of a ligand is affected
by the stability of the mixed interface R:T relative to mean

stability of the interfaces R:R and T:T between subunits in
like conformations. Inspection of equation 12.25 shows that

making Kg.r smaller increases the importance of the outer
terms with respect to the inner, but this can be made clearer
by defining a constant ¢* = Kir/KRx to express this relative
stability. (It may seem surprising at first sight that there is no
mention of the T:T interface in this definition, but remember
that both Kg.t and Ky . already define the stabilities of the R:T
and R:R interfaces relative to the T:T interface.)

If Kg.v is replaced by KRk using this definition, it then
becomes clear that & = KtKa/ K always occurs as a unit: its
three components are conceptually distinct, but they cannot be
separated experimentally by means of binding measurements.
The equation can thus be simplified in appearance without loss
of generality by writing it in terms of ¢ and K:
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c[A]  [A]2 (12.26)
y= R :
Y= A, AP
K 2
8 . & (12.5)
v K  KiKa
Vv r 2a a“
Ky KK,

The definition of ¢ is the same for all quaternary structures:
it applies not only to dimers, but also to trimers, tetramers,
and so on, regardless of how the subunits are arranged. The
definition of K is a little more complicated: it always contains
KK, as an inseparable unit (as follows from steps 1 and
2 in the description above of how any binding process is
decomposed into different notional components); on the other
hand, the power to which Kg.p is raised in the denominator
varies with the number of subunits and with the number
of R:R interfaces that the fully liganded molecule contains.
However, this has little importance: the important point is that
regardless of quaternary structure and geometry the range of
binding behavior possible for a single ligand in the sequential
model is determined by two parameters, one to represent the
stability of the R:T interface with respect to the R:R and
T:T interface, the other an average dissociation constant for
the complete binding process from fully unliganded to fully
liganded protein. This is the geometric mean2l of the Adair
dissociation constants, as may be seen for the dimer by writing
these explicitly, after comparing equation 12.26 with equation

12.5 (repeated above in the margin):

Ky = 5, K, =cK (12.27)
C

with ratio K,/K; = c2.

12.7.3 Properties implied by the binding equation

It is now clear that the degree of cooperativity, and hence
the shape of the binding curve, depends only on the value
of c. As illustrated in Figure 12.42, values of ¢ < 1 generate

positive cooperativity and values of ¢ > 1 generate negative
cooperativity. The effect of varying ¥ is not shown (to avoid

making the figure too complicated), but can be stated simply:
it has no effect on the shapes of the curves when In[A] is the
abscissa (and affects only the scaling with other variables as
abscissa), but simply causes them to be shifted to the right (if *
increases) or left (if ¥ decreases); in other words, * has no effect
on the degree of cooperativity. The curve for ¢ = 10 is doubly
sigmoid, with a noticeable decrease in slope around half-
saturation. This effect becomes more pronounced with larger
values of ¢ and leads to half-of-the-sites reactivity
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Figure 12.42. Binding curves for the sequential model. The

curves are calculated from equation 12.26, with £ = 1000 and

the values of c shown. The value of ¥ does not affect the shape
of a curve, but only its location along the abscissa.
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Figure 12.43. Binding curves with a linear scale of

concentration. Some of the curves of Figure 12.42 are rescaled.
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Figure 12.44. Scatchard plots for the sequential model. The

curves of Figure 12.42 are redrawn.

The cooperative case generates a visibly sigmoid curve when a
linear scale is used for the ligand concentration (Figure 12.43),

but the negatively cooperative curve is qualitatively similar to
the noncooperative curve. As with the symmetry model, the



FUNDAMENTALS OF ENZYME KINETICS

degree of deviation from linearity is very evident in Scatchard
plots (Figure 12.44).

It would be convenient if there were a simple correspondence
between the parameters of the sequential model and those of
the Hill equation (equation 12.1), but although, as we have

seen, the degree of cooperativity depends only on ¢, there
is no one-to-one relationship between h and ¢, as h varies
with the degree of saturation and c¢ does not. By contrast,
the relationship between * and K;s, the half-saturation
concentration, is as simple as one could ask: they are identical.

As incorrect statements are sometimes found in the literature
one should notice that in the sequential model the shape of
the curve is defined by fewer parameters than in the symmetry
model (one instead of two). Thus the capacity of the sequential
model to explain negative cooperativity whereas the symmetry
model cannot is not a consequence of the large number of
constants considered in deriving the sequential model (K¢, K,
Kg.rand Kg.g)-

More subtle misconceptions about the sequential model are
implied by some authors’ use of names such as “Adair-
Koshland model” or “Pauling-Koshland model” for it. Although
crediting it to Adair, as done, for example, by Wimpenny and
Moroz, correctly implies that the sequential model is a special
case of the Adair model it also incorrectly implies that the
symmetry model is not. In reality, both models are expressible
in terms of Adair constants (equations 12.19 and 12.27), as,

indeed, any valid equation to describe binding of a ligand to
a macromolecule at equilibrium must be. The simplest test
of meaningfulness that one can apply to a proposed equation
written for this purpose is adherence to the Adair equation;
equations that are not special cases of the Adair equation,
such as some that Weber and Anderson proposed for lactate
dehydrogenase, generally violate the principle of microscopic
reversibility (Section 5.6).22

Likewise, some of the mathematics in the sequential model is
the same as that applied by Pauling to hemoglobin, but the
underlying concepts are different: he was working at a time
when it was reasonable to suppose that the oxygen-binding
sites of hemoglobin were close enough together in space
to interact in an ordinary chemical way, and there was no
implication of conformational interactions.

§5.6,pages 119-122

For a positively cooperative dimer there is no difference
between the binding curves that the two models can predict:
any value less than 1 of the ratio K, /K; of Adair constants
that one can give is consistent with the other. It is thus
impossible to distinguish between them on the basis of binding
experiments with a dimer. In principle they become different
for trimers and higher oligomers, because the symmetry model
then allows the binding curves plotted as a function of In [A]
(as in Figure 12.34) to become unsymmetrical about the half-

saturation point, whereas the corresponding curves generated
by the sequential model (as in Figure 12.42) are always

symmetrical with respect to rotation through 180° about this
point. However, the departures from symmetry are quite small,
and highly accurate data are needed to detect them. Moreover,
the greatest degree of cooperativity occurs in the symmetry
model when Lc" = 1, and as this is also the condition for a
symmetrical binding curve in the symmetry model one may
expect that for at least some enzymes evolution will have
eliminated any asymmetry that might have existed.

12.8 Association-dissociation
models of cooperativity

groups (Frieden; Nichol and co-workers)
independently suggested that cooperativity might in some
circumstances result from the existence of an equilibrium
between protein forms in different states of aggregation, such
as a monomer and a tetramer. If a ligand has different intrinsic
dissociation constants for the two forms, then this model

Various

predicts cooperativity even if there is no interaction between
the binding sites in the tetramer. Conceptually the model is
rather similar to the symmetry model, and the cooperativity
arises in a similar way, but the equations are more complicated,
because they need to take account of the dependence of
the degree of association on the protein concentration.
Consequently, in contrast to the equations for the symmetry
and sequential models, this concentration does not cancel from
the expressions for the saturation curves. This type of model
is much more amenable to experimental verification than the
other models we have considered, because the effects of protein
concentration ought to be easily observable. They have indeed
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been observed for a number of enzymes, such as glutamate
dehydrogenase (Frieden and Colman) and glyceraldehyde 3-
phosphate dehydrogenase (Ovadi and co-workers), and other
examples were noted by Kurganov, who discussed association-
dissociation models in detail.

12.9 Kinetic cooperativity

All the models discussed in the earlier part of this chapter
have been essentially equilibrium models that can be applied
to kinetic experiments only by assuming that v/V is a true
measure of y. Cooperativity can also arise for purely kinetic
reasons, in mechanisms that would show no cooperativity if
binding could be measured at equilibrium. This was known
from the studies of Ferdinand and of Rabin and others when
the classic models of cooperativity were being developed, but
at that time there did not seem to be experimental examples
of cooperativity in monomeric enzymes. As a result it was
widely assumed that even if multiple binding sites were not
strictly necessary for generating cooperativity they provided
the only mechanisms actually found in nature, and the purely
kinetic models were given little attention. However, rat-liver
hexokinase D provided an example of positive cooperativity in
a monomeric enzyme, making it clear that models for such
properties would need to be considered seriously.

Hexokinase D is an enzyme found in the liver and pancreatic
islets of vertebrates. Because of a mistaken perception that
it is more specific for glucose than the other vertebrate
hexokinases, discussed by Cardenas and co-workers, it is
frequently known in the literature as “glucokinase”, but this
name will not be used here. It is monomeric over a wide range
of conditions, including those used in its assay (Holroyde and
co-workers; Cardenas and co-workers), but it shows marked
deviations from Michaelis—-Menten kinetics when the glucose
concentration is varied at constant concentrations of the other
substrate, MgATP2- (Niemeyer and co-workers; Storer and
Cornish-Bowden). When replotted as Hill plots, the data show
h values ranging from 1.5 at saturating MgATP?2~to a low value,
possibly 1.0, at vanishingly small MgATP2- concentrations. On
the other hand, it shows no deviations from Michaelis-Menten
kinetics with respect to MgATP2- itself.

Other examples of cooperativity in monomeric enzymes
are not abundant, but they exist (see Cornish-Bowden and
Cardenas), and indicate that mechanisms that generate kinetic
cooperativity can no longer be ignored. I shall consider
two such mechanisms in this section. The older is due
to Ferdinand, who pointed out that the steady-state rate
equation for the random-order ternary-complex mechanism

(Section 8.3.2) is much more complicated than equation 8.7
if it is derived without assuming substrate-binding steps to
be at equilibrium; he suggested that a model of this kind,
which he called a preferred-order mechanism, might provide
an explanation for the cooperativity of phosphofructokinase.
It is clear enough from consideration of the method of

King and Altman (Chapter 5) that deviations from Michaelis-
Menten kinetics ought to occur with this mechanism, but
this explanation is rather abstract and algebraic. In conceptual
terms the point is that both pathways for substrate
binding may make significant contributions to the total flux
through the reaction, but the relative magnitudes of these
contributions change as the substrate concentrations change.
Thus the observed behavior corresponds approximately to
one pathway at low concentrations, but to the other at high
concentrations.

Ricard and co-workers developed an alternative model of
kinetic cooperativity from earlier ideas of Rabin and White-
head. Their model is known as a mnemonical model (from
the Greek for memory),23 because it depends on the idea
that the enzyme changes conformation relatively slowly, and
is thus able to “remember” the conformation that it had
during a recent catalytic cycle. It is shown (in a simplified

form) in Figure 12.45a. It postulates that there two forms
E and E’ of the free enzyme differ in their affinities for A,
the first substrate to bind; in addition equilibration between
E, E’, A and EA must be slow relative to the maximum flux
through the reaction. With these postulates, the behavior of
hexokinase D is readily explained. As the concentration of B
is lowered, the rate at which EA is converted into EAB and
thence into products must eventually become slow enough
for E, E/, A and EA to equilibrate. At vanishingly small
concentrations of B, therefore, the binding of A should behave
like an ordinary equilibrium, with no cooperativity, because
there is only a single binding site. At high concentrations
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of B, on the other hand, it becomes possible for EA to
be removed so fast that it cannot equilibrate and the laws
of equilibria no longer apply (Storer and Cornish-Bowden).
Deviations from Michaelis—Menten kinetics are then possible
because at low concentrations of A the two forms of free
enzyme can equilibrate (Figure 12.45b), favoring E’, but at

high concentrations they cannot (Figure 12.45c), leaving the

free enzyme predominantly in the form E released after the
chemical reaction.

§ 8.4.1, pages 204-207
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Figure 12.45. Mnemonical model. (a) General characteristics.

(b) At low concentrations of A. Even if the second substrate B
is at a high enough concentration to remove EA as soon as it is
formed, binding of A to the free enzyme is slow enough for E
and E’ to equilibrate. (¢) At high concentrations of it can bind to
the high-affinity form E before it has time to decay to E’

In the mnemonical mechanism as proposed for wheat-germ
hexokinase by Ricard and co-workers the same form of EA
complex is produced from both forms of free enzyme when
substrate binds to them. However, this is not a necessary
feature of the model, and the slow-transition model developed
a little earlier by Ainslie and co-workers supposes that
two different conformational states exist during the whole
catalytic cycle, with transitions between them possible at any
point that occur at rates that are slow compared with the
catalytic rate. In general, any model that allows substrate to
bind in two or more parallel steps will generate a rate equation
with terms in the square or higher power of the concentration
of the substrate concerned, so there is no limit to the models
of kinetic cooperativity that can be devised. Unfortunately it
is quite difficult in practice to distinguish between them or to
assert with much confidence that one fits the facts better than
another. Certainly, both the mnemonical and slow-transition

models are able to explain the behavior of hexokinase D
adequately, as Cardenas discusses thoroughly in her book.
The existence for multiple conformation in the hexokinase D
reaction was originally deduced from kinetic considerations,
but there is now abundant evidence, for example from nuclear
magnetic resonance studies by Larion and co-workers, that the
conformational changes are real and large, as illustrated above
in Figure 12.30.

Summary of Chapter 12

- Michaelis—Menten kinetics allow very little sensitivity
to changes in conditions, and so effective regulation of
metabolism requires certain enzymes, known as regulatory
enzymes, to follow more complicated kinetics.

- Cooperativity is the property whereby an enzyme can have a
steep dependence on substrate or inhibitor concentration.

- Allosteric effects allow regulation by molecules that do not
bind at the same sites as the substrates and products.

- The Hill equation is useful for expressing the degree of
cooperativity in quantitative terms, but it is not based on a
realistic mechanism.

- The symmetry model of Monod, Wyman and Changeux
explains cooperativity in terms of an oligomeric protein with all
subunits in the same conformation at any time.

- The sequential model of Koshland, Némethy and Filmer
explains cooperativity in terms of interactions between the
subunits of an oligomeric protein.

- Association-dissociation models of cooperativity explain it in
terms of effects of ligands on the state of oligomerization of a
protein.

- Kinetic cooperativity can arise in a monomeric enzyme from
slow relaxations between different conformational states.
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